
00
N RCUnITY CLASSIFICATION Of T0419 PMA0G (When Deis Entered) __________________

REPORT DOCUMENTATION PAGE BFRE COMPST1144TIOM

(%J CION HU2. GOVT ACCESSION NO: S. RE1CIPIEN4T'S CATALOG 00U001ERK

NW-LIS-89-12-O1 _______________

4. TITLE (and eubalfa.) S. TYP9 OF REPORT & PERIOD COVCR9G

UW VLSI Chip TesterTehia
S. PERFORMING oRGo. REPORIT liUMSet

T . AU THORI(s) 6. CONTRAC on GRAmT NUmU As)

Neil McKenzie N00014-88-K-0453

9. PER1FORMING ORGANIZATION NAME AND q9DE& PROGAM E1LE#fMENT.PROjjAC?. TASK
.~DR3SARE A & FORX UNI MUMWe

Northwest Laboratory for Integrated Systems-
University of Washington
Dept. of Comup. Science, FR-35 Seattle, WA 9819.

II. CORTROLL16IG OFFICE "AMC AWIO ADDRESS IS. REPORT DATE

DARPA- ISTO December 1989

1400 Wilson Boulevard IS. Y61411091 OF PAGES

14. &;OftAGEN WY NAME S 6ADPORESS(aa diffee from, C.,namllnd alfi..) IS. SECURITY CLASS. (of thas ,.peua)

Office of Naval Research - ONR Unclassified
Information Systems Program - Code 1513: CAF
800 North Quincy Street IS.0. DeCk0ASSrICATIO041OOWNGRADINO

Arlington, VA 22217 COLE

S0. DISTRIGUT1004 STATCUMENT (of this Report)

17. DISTRIBUTION ST ATIEMEN T (01 the abstrt enteresd in Block 20, 11 different hemn Roperf)

III. SUPPLEMENTARY MOTIS

IS. KEY WORDS (Conu.w on reverse *8ai. at necessary and adentafy by baocenoaimS.)

Chip Tester, Apple Macintosh, VLSI, Xilinx, functional testing,

*ASSTPACT (Cmmle n rover.. Wle. It neessar and idenatf by block numbsif)

is based on the Apple Macintosh II personal computer. It tests chips
that have up to 128 pins. All pin drivers of the tester are
bidirectional; each pin is programwed independently as an input or an
output. The tester can test both static and dynamic chips.---

continued on back...

DD 1, Aw 1473 EDITiop orN~ 55 IovSi OUSOLETE

SECURITY CLASSIFICATION OF THIS4 PAG9 (Shoe Dof* Woi....o

#20 Abstract (continued)('
Rudimentary speed testing is provided. Chips are tested by executing
C programs written by the user. A software library is provided for
program development. Tests run under both the Mac Operating System
and A/UX. The design is implemented using Xilinx Logic Cell Arrays.
Price/performance tradeoffs are discussed.

Accession 0cr

1NTIS GRA&I
DTIC TAB
unannouncedjust fic tic

tDistributijon/

AvalablitY Co -des

Avaii and/or

Dist special

UW VLSI Chip iester

Neil McKenzie

Technical Report 89-12-01

Department of Computer Science and Engineering
University of Washington, FR-35

Seattle, WA, USA 98195
December 1989

UW VLSI Chip Tester*

Neil McKenzie University of Washington

December 1, 1989

Abstract

We present a design for a low-cost, functional VLSI chip tester. It is based on the
Apple Macintosh II personal computer. It tests chips that have up to 128 pins. All
pin drivers of the tester are bidirectional; each pin is programmed independently as an
input or an output. The tester can test both static and dynamic chips. Rudimentary
speed testing is provided. Chips are tested by executing C programs written by the
user. A software library is provided for program development. Tests run under both
the Mac Operating System and A/UX. The design is implemented using Xilinx Logic
Cell Arrays. Price/performance tradeoffs are discussed.

1 Introduction

Chip testers are used to test the functional and analog behavior of chips. Chips are tested
by delivering a sequence of test vectors to the input pins of the test chip, allowing some
time for the test chip to compute its results, then sampling the chip's outputs. Chip testing
is an important phase of the VLSI design process. However, because testing is expensive,
time consuming, and difficult, it is often not done.

The representation of the test vectors has a significant impact on how easy the tester is to
use. For some testers, test vectors are represented in only one way, as an array of binary
digits. This representation is difficult to edit and maintain. Furthermore, many chip testers
require the user to hand-wire all the pins of the test chip socket. This is inconvenient when
the test setup must be changed.

This report describes a design for an inexpensive functional tester, known as the UW Chip
Tester. The UW Chip Tester is a combined hardware and software solution to thle problem of
functional chip testing. This paper first discusses its design goals. Next it gives a physical
description of the tester. Next, the hardware design is discussed: cost reduction, design
tradeoffs, function, and the actual implementation. Finally, the software is discussed.

*This research was sponsored by Apple Computer, Inc., under grant number ERO030.

2 Design goals

The UW Chip Tester:

* Is cheap and small

* Tests functionality

* Is easy to use

* Requires no hand-wiring in general

* Provides testing and debugging via programming

* Is extensible

9 Allows dynamic chips to be tested

The UW Chip Tester has these limitations:

* Speed testing is rudimentary

* No analog testing is done

e Pin drivers are not sophisticated

Our goal is to create a tester that costs an order of magnitude less to build than many
commercially available testers. Board area, chip cost and parts count are reduced to the
minimum. For the cost of one commercial tester, a laboratory will be able to provide many
of our testers. This is a significant advantage in a teaching environment, where there is
competition among students for equipment. In the case where a more expensive tester is a
necessity, and it is heavily used, our tester can offload the functional testing requirements.

Despite its simplicity, the tester will be easy to use, since all its pins are bidirectional. No
hand-wiring will be needed, except for the chip's power and ground pins to provide nigh
current. Chip testing is performed by writing and executing test programs that can be
tailored to each chip's specific needs. The design is extensible; the number of test chip pins
can be easily increased. By adding static RAM to the tester, tests can be exerated offline
from the host CPU.

The tester has its limitations. Speed testing is limited to measuring the propagation delay
between the inputs and the outputs of the test chip. The tester uses CMOS pin drivers and
latches; both CMOS and TTL chips can be tested. The CMOS pi drivers drive a limited
amount of current. The user has no control over switching characteristics such as slew rate.
Each test pin drives and tests a binary value. Analog testing is not performed by the tester,
but it is simple enough to use an oscilloscope to perform some analog analysis.

2

Figure 1: The UW Chip Tester prototype

3 Overview

3.1 Physical description

The UW Chip Tester system consists of a Macintosh II a NuBus interface card, the tester
unit, and cables. Figure 1 is a photograph of the prototype of the tester.

The tester system uses a NuBus interface card to provide a parallel port. Currently, the
Adex MacProto card is being used. The MacProto card provides a 32-bit data bus, an
address bus, and a 7-bit control register. There are also handshaking signals for CPU read
and write. These signals are brought out by cables to the tester unit.

The tester unit consists of a PC board, connectors, socket's for the chips under test, and a
power supply, The tester unit has %kirewrap pins for jumpering power or grouind directly to
the test chip. or for oscilloscope probes. Seven Xitinx XC3020 chips are used: one for the
controller, and six for the data path. The UW Chip Tester can test chips with up to 128
pins. Different chip sockets are handled by having different personality boards that plug

3

Key: data path

control busI I
Host bus -- register Controller

MemoryLatches

Bank 0 (otoa)and

Device under test

Bank1 MeoryLatches
Bank 1and

(optional) T Buffers

Figure 2: Block diagram for UW Chip Tester

4

into the tester unit.

Figure 2 is a block diagram of the tester unit. The tester hardware consists of a controller
module and data path modules. A single data path module is called a bank. Each bank
control 64 test chip pins. More banks can be added to the design in order to increase the
number of test chip pins.

We hope to make the UW Chip Tester available to universities, as a kit with an unstuffed
PC board, software, and documentation. The tester unit stuffed costs about $500. The
entire system can be assembled for less than $1000.

3.2 Software interface

A chip test is represented as a custom software program. The test is performed by executing
the compiled form of that program. Programming provides high-level flow control and
structure. Pins of the test chip are represented as data structures in the test program. This
representation is more expressive and easier to create and maintain than an array of binary
digits.

The UW Chip Tester is based on the Apple Macintosh II. Test programs may run under
either MacOS or A/UX. The test package is currently implemented as a C library. Test
programs are written in C and then linked to the library.

4 Data path tradeoffs

This section describes the tradeoffs between different strategies for implementing the tester's
data path. Price and performance of each strategy are discussed. The UW Chip Tester's
implementation is was chosen as the best compromise of low cost and good performance.

4.1 Simple scheme using single buffering

One important design goal is software control of the pin drivers, such that any pin can be
configured as an input or output on-the-fly. This goal can be realized by using three bits
of state per pin of the test chip. One bit stores the input value, one bit stores the sampled
output value, and one bit controls a three-state buffer. See Figure 3.

This scheme can be driven by a parallel port. Extensibility is provided by adding parallel
ports as needed. The sample clock is also generated by a parallel-port signal. The entire
output vector is latched simultaneously.

5

Pars port pins ftetci

enab~e enble

Figure 3: A simple scheme using single buffering

Figure 4: Using double buffering

The advantage to this scheme is that it is simple and cheap. The drawback to this scheme

is that a large test chip will need more than one parallel port. This means that the test
chip's input vector is not guaranteed to arrive simultaneously. In other words, there can
be a large skew between signals, on the order of microseconds. We considered this to be a
severe restriction, and did not implement the data path in this way.

4.2 Double buffering

In order to limit the skew, an extra layer of buffering is used. This design requires five bits of
state per pin of the test chip. The first column of input state bits are loaded asynchronously,

and then the entire column is propogated simultaneously to the inputs of the test chip. See
Figure 4.

The advantage to this scheme is that it is still reasonably cheap. One drawback to this
scheme is that speed testing is limited by the number of parallel ports needed. Each parallel
port may need to be accessed.

6 -

enablem~mm~m enable

paral.port pinse

Figure 5: A four vector queue

However, if only one bit changes (e.g. a clock signal), only one parallel port will need to be
accessed. The larger the number of parallel ports that need access, the slower the vector
cycle time. This can affect the ability of the tester to do true speed testing.

4.3 Queue

In order to provide true speed testing, input vectors must arrive at the test chip at the
same interval as the sample clock. One method to implement this is a first-in-first-out
queue, composed of a series of registers. Queues are needed to store both the input and
output vectors. Figure 5 is an example of a queue four vectors deep. A four vector burst is
sufficient for testing CMOS chips that use two-phase clocking, and are static when no clocks
are active. The expense of this extra functionality is linearly proportional to the size of the
queue. Another method that we studied used an off-the-shelf FIFO chip. This solution was

relatively expensive and we did not pursue it.

4.4 Local memory

Another way to perform speed testing is by using local memory to store the test vectors.
This is a standard tester design. Vectors can be moved between the host's memory and the
tester's local memory when the tester is not actively testing chips. The test is set up by
the fost, then it is exeuted ofine from the host. The test is halted, and then the results
are read back by the host. The test interface is batch-oriented rather than interactive when
using local memory. See Figure 6. The local memory also gives the tester the ability to test

dynamic chips (see the following subsection).

7

Device under test

Memory and

Hos
Buffers

Host

Tester is inactive; host accesses tester memory

Device under test

Memory and -
Buffers

Host

Tester is active; test runs offline from host

Figure 6: Local memory access

The speed of the tester is a function of the access speed of the memory chips. Static RAMs
are preferred over dynamic RAMs because they have faster access times. Local memory
subsumes the need for the queue. The queue's advantage is that it is still the fastest method,
but its expense is linear in the size of the queue. The local memory solution is slower, but
its expense is less than linear in the size of the memory. If a large number of vectors is
needed, the local memory solution is the best one.

4.5 Dynamic chip testing

Dynamic chips are chips that have dynamic state. A familiar example is a dynamic shift
register. Its internal charges -re volatile. If the shift register is not clocked at a certain
rate, it will lose its information.

Dynamic chip testing is similar to speed testing. Speed testing requires a minimum timing
requirement; the speed is increased until the chip fails. By contrast, dynamic chips have a
maximum timing requirement; if its signals change too slowly, the dynamic chip will fail.
Dynamic chips are common, and it is important to be able to test them.

Dynamic chip testing is accomplished either by using a sequencer and local mefnory to
run a test offline from the CPU, or using the CPU such that it is dedicated to the testing

8

task. Dynamic testing in the latter case may fail under a multitasking operating system
like Unix. Other processes may take away the CPU for too long a time. Moreover, it may
be impossible to get consistent results, since context switches happen asynchronously.

5 UW Chip Tester implementation

5.1 Cost and space analysis

Our initial strategy for implementing the tester was with small-scale integrated circuits.
Since we wanted to have CMOS-compatible pin drivers, we would use the HC family of
SSI chips. We analyzed the cost-per-pin-driver of the test chip using the double-buffering
scheme. Each pin requires a minimum of five flip-flops and a three-state driver. This is
equal to 5/8 of a 74HC374 and 1/4 of a 74HC125, or roughly 7/8 of an HC part. These
parts cost about $2 each; the cost per pin is roughly $1.75. For 128 pins, the parts cost is
about $225.

The parts count for 128 pins is large. It takes 80 74HC374's and 32 74HC125's; that's 112
chips for pin drivers alone. We decided that this was unacceptable. The PC board needed
would be huge.

In order to reduce the chip count, we looked at higher-density chips, such as Programmed
Array Logic chips. The highest density PAL we found was the 22V10. We saw that each
22V10 could control two pins of the test chip. For 128 test chip pins, 64 of these PALs
would be needed. Each 22V10 costs between $10 and $15. Although the parts count is
halved, the parts cost would at least triple with respect to the SSI solution. We judged this
to be unacceptable.

To achieve higher density, we considered custom logic chips such as gate arrays. Much higher
density would be realized. However, custom chips require greater economies of scale to make
them cost-effective. Custom logic chips have a large non-recoverable engineering cost. Also,
they have limited availability since they cannot be bought off-the-shelf. Therefore, we
decided not to use custom logic in the tester.

Fortunately, we found a technology that implements the tester well. We chose the Xilinx
Logic Cell Array to implement much of the UW Chip Tester design.

9

Key: I/0 block (lOB)

Config. logic block (CLB) FCI
Interconnection network

Figure 7: A simplified floor plan of the Xilinx LCA

5.2 Xilinx Logic Cell Arrays

LCA technology has a number of features that are favorable:

" Higher gate density than PAL technology

" Flexibility

" Reprogramnability

" Low cost per gate

* C.MOS implementation; low static current

An LCA consists of an array of Configurable Logic Blocks (CLBs) in its interior, a ring
of Input Output Blocks (IOBs) around the perimeter, and a network of interconnection

10

paths. See Figure 7. In the XC3000 family of LCAs, each CLB contains two flip-flops and
it computes any function of 5 Boolean variables, or two functions of 4 variables. The IOBs
can be programmed as inputs, outputs, or bidirectional. Refer to [1], chapter 2, for a more
complete treatment of the LCA's internals.

The LCA used in the UW Chip Tester is the XC3020, which has 64 IOBs1 and 64 CLBs.
The 3020 costs about $45. The UW Chip Tester design uses this LCA to drive the pins of
the test chip. Each 3020 controls and samples 22 pins of the test chip. The cost-per-pin
of the tester is about $2. This compares closely with the SSI parts cost, but has a much
smaller area requirement.

LCAs are programmed in-circuit at power-on time. The bit stream that represents its
circuit is clocked into the LCA in bit-serial fashion, using a two wire interface. This is LCA
Slave Mode, as it is described in [1], page 2-20.

The LCA bit streams are stored on disk on the host computer. An application program
is used to initialize the LCAs. The initialization takes less than 100 milliseconds; this is
negligible compared to the time it takes to launch an application. Different versions of the
LCA circuits can be made available on disk to make the overall circuit perform differently.
This is helpful for providing field upgrades.

When an LCA is uninitialized, its outputs are configured such that there is a passive pullup
to the power rail Vdd. This allows the LCA's 1/0 pins to be directly connected to Vdd or
ground without hazard to the LCA at pre-initialization time.

5.3 Multiplexing

One design decision that was motivated by the LCA architecture is the use of multiplexing.
The LCAs are pin-limited, so it is advantageous to reduce the number of LCA I/O pins
needed that do not drive the test chip.

The solution is to reduce the number of parallel-port pins. Figure 8 demonstrates this; the
parallel-port pin is multiplexed three ways among input, output and buffer control. Each
flip-flop requires a separate enable signal, which is computed from address bits or control
register bits.

Furthermore, the data paths for more than one pin of the test chip can be multiplexed
together. Figure 9 demonstrates how one parallel-port pin is multiplexed six ways in order
to control two test-chip pins.

Another benefit of multiplexing is that tester systems with local memory (see Section 4.4)
require fewer RAM chips. The information in local memory is interleaved. In the case

'Six 1OBs are not bonded to physical pins in the PLCC-68 version of the 3020; therefore Chere are
effectively only 58 1OBs.

1Mi

P f test chip arallel port pin

enablel enable
_t

.. ".t

t: str'3-state driver

Readback register

SE

3 -qst

a driver

clock sample clock

Figure 8: Multiplexing the parallel-port pins

P f test chip

enable

3-state driver

Readback register

arallel port pin
enable 2-to-l

mUX
rive

3-.t t. drive

P f test chip

D D 0
enable

Readback register

E;3-:2tat*

rdriver

EOj

enable

clock sample clock

Figure 9: Multiplexing two test-chip pins

12

meow

of the six-way multiplexing strategy, six words of memory are used for every test vector,
according to the following table:

Word 0: pin 1 data
Word 1: pin 1 enable
Word 2: pin 2 data

Word 3: pin 2 enable
Word 4: pin 1 result
Word 5: pin 2 result

One drawback of multiplexing is that less parallelism is available; more memory cycles are
needed to execute a single test vector. This defeats the ability to perform speed testing at
the full speed of the memory chips.

5.4 Extensibility

To increase the number of test chip pins, the entire data path circuit can be replicated.
One instance of this circuit is known as a bank. In the UW Chip Tester, each bank requires
three XC3020 chips. Together, they control 64 test chip pins. The current implementation
has two banks which yields 128 test chip pins.

Each bank is mapped to the same physical address space. Banks are selected by bank-select
bits in the control register. Only one bank can be accessed at a time by the host computer.
However, when the tester is actively testing a chip, all banks run in parallel.

5.5 Data path implementation

The UW Chip Tester uses the least expensive scheme for the data path that has the ca-
pability to test dynamic chips. This is done via the double-buffering scheme with six-way
multiplexing. Each parallel-port pin drives two test-chip pins. Figure 10 describes the
circuit for controlling two pins of the test chip. This circuit is a macro which is instanti-
ated eleven times inside each data path LCA. This circuit is CLB-limited. CLB utilization
exceeds 90 per cent in the XC3020.

Local memory is optional in the UW Chip Tester. Each bank may contain four static RAM
chips. The implementation uses static RAM chips that have 8 data pins. Any size of static
RAM from 2Kx8 to 32Kx8 may be used. All RAM chips in the tester must be the same
size, since all of them are accessed in parallel during offline testing. The number of vectors
is the size of a single RAM chip divided by six. E.g. if 32Kx8 RAMs are used, then the
number of vectors is 5461. The PC board layout is the same whether or not the memory is
installed.

13

MAN-

DU"in

W W D a
na GM& ino

pino

bufO

rrA

rT-n

MU

D a ram pin

bufl

-Aar-

yh- xselect<4>

rT.L

TQR

DOT pi:n

pin2

buf2 ;pin2 !!Elf

rT.

sn
xsele t<3

>
2 DUT pins require 5 CLBs and 3 103s.

buf3

Figure 10: Data path macro showing CLB and IOB usage of LCA

14

signals generated by tester

enable vect~or

input data to chipt

coarse delay i

sample clockL

output data from chip %

coarse u fine -aml pon
zero-] -<- tau- -a~l on

(time allowed for chip to compute its result)

Figure 11: Tester timing

5.6 Pseudo speed-testing

Rudimentary speed testing can be performed by varying the timing of the sample clock.
For example, the chip's inputs might be changed every microsecond, but the chip's outputs
may be sampled tens of nanoseconds after the inputs arrive. This is not considered to be
a true speed test, since internal state information may be changing more slowly than what
can be sampled at the pins. See Figure 11.

For pseudo speed-testing, the sample clock's delay time r must be adjustable. The sample
clock signal is derived from the state machine clock when the enable vector signal (e.g.
Xselect<4>, from Figure 10) is active. The variation is provided by two mechanisms: the
coarse delay and the fine delay. When both delays are set to zero, the sample clock arrives
simultaneously (within a few nanoseconds) with the current input vector. The coarse delay
is a number of state-machine clock cycle times. The fine delay is composed as a series of
gate propagation delays, which is less than a single clock cycle time.

15

clock

read4

read
cles

switch inputs-' c- latch outputs

sample clock

2 irtecle

write memory
i L

Figure 12: Tester timing for offline testing

5.7 The controller

Whether or not the tester is able to run tests offine, some sort of controller is needed. The
controller provides handshake signals to the host bus and interfaces with the parallel port. It

governs the data flow through to the test chip, and provides the timing for delivering the test
vector and then latching the result. For chip testing offline from the CPU, the controller

must do more. Data movement between the CPU and local memory may be performed
when the tester is idle. Read and write cycles are performed during offline testing. Figure

12 describes the controller's timing for offline testing. Four consecutive memory locations
are read. The input vector is delivered to the pins of the chip under test. The results

are computed by the chip, and the controller moves them into the next two locations in
memory.

The controller can execute a block of vectors stored in local memory, and then wait for the
CPU to read back the results. It can execute this block once, or it can execute the block

in an infinite loop. The latter feature is useful for displaying the test chip's signals on an
oscilloscope.

In order to run tests offline from the CPU, the controller has an address counter, a loop

counter and a delay counter. These counters are implemented using discrete TTL parts. In

particular, 74LS693's are used which have buried registers (see [2]). These registers are used
to store the counter's default value. This is useful for infinite loop mode, as the counters

can be easily reloaded at the end of the loop in order to start over.

The address counter provides addresses to the RAMs in local memory. The loop counter

keeps track of the size of the vector block, and it counts in step with the address counter.

16

When the count is zero, the block's end has been reached. The delay counter provides the
coarse adjustment to the sample clock delay time. In the UW Chip Tester, the granularity
of the coarse sample clock delay is 100 nanoseconds.

The controller can be implemented using a finite-state machine or a microprocessor to
provide sequencing. FSMs are superior to MPUs in this case, where the control is simple
and speed is critical. Typically, PALs are used as FSMs. However, the UW Chip Tester
uses a Xilinx LCA as a FSM in its controller. There are several reasons why the LCA is
an excellent choice. The number of control lines is large, and is beyond the range of most
PALs. The reprogrammability of the LCA helps for implementing both the interactive .nd
offline .testing features of the tester. The fine (gate propagation) delay can be created using
gates inside the LCA. This fine adjustment to the coarse delay time provides a wide range
of possible delay times. Different versions of the controller are made available to the tester
user, which have different sample clock delays and work with or without local memory.

5.8 Limitations

The UW Chip Tester is a low-cost, functional tester. Vectors are presented every few
microseconds. Skew between test chip pins is on the order of nanoseconds. This is due to
both the wire length and the characteristics of the Xilinx LCA, which has inherent skew
between any pair of its output pins. Since the Xilinx LCA is CMOS, it has limited current
sinking ability. The 3020 has only two power and two ground pis. If many of its outputs
switch simultaneously, some signal degradation could occur. According to [1], a maximum
of 32 outputs should switch simulateously. Since there are only 22 pin drivers per LCA, the
problem is not severe.

6 Software test package

6.1 Low level interface package

At the lowest level, there is a library of functions and macros written in C for interfacing
to the tester. The control register, on the interface card, is accessed to in order to initialize
the LCAs and for running dynamic tests. The control register, the data path registers and
the local memory (if installed) are simply memory-mapped into the Macintosh slot space
of the interface card. The tester code is written to be slot-independent; at boot time, the
Mac determines what cards are installed and what slots they occupy. The low level package
queries the operating system to determine the slot number of the tester interface card. Refer
to [3] for further discussion of NuBus slot addressing methods.

17

6.2 Test package

The test package contains a number of high-level constructs for creating test programs.
There are two abstract data types that the test package uses: PinType and SignalType.
PinType is a mapping between the physical chip pin and the socket. SignalType represents
an array of Pins, which is convenient for describing busses. In this way, physical pins of
the tester are mapped to integers. The maximum width of a Signal is 32 bits, which is the
same size as a long integer on the Macintosh.

The physical test chip socket must have different logical pin numberings according to the
footprint of the test chip. This mapping is provided by using different socket definition files.

There are several functions that the test package provides to interface with test programs.
These functions are:

" RunTes()

" NewSignal()

" Stepo)

" SetSignalData()

" SotSignalDirection()

" VerifySignalDataO)

RunTest() is a function that initializes the tester and executes the test. The address of a
user's function is passed as an argument; this function is called after hardware initialization.
When the user's function returns, RunTest() performs cleanup, after which the program
terminates.

NeSignal() creates and initializes a Signal. This function is called once per Signal at
the beginning of the user's test code. The Pins controlled by the Signal are declared
here, as well as the direction (input or output) of the Signal. SetSignalData() and
SetSignalDirection() are used to change the data and direction of the Signal. The
effects of these functions on a particular Signal persist until a subsequent call to either of
these functions changes that Signal. Both these commands are buffered; no action takes
place at the pins of the test chip until Step() is called.

Step() causes the tester to issue the current vector to the pins of the test chip, wait for the
indicated delay time, and then latch the results. After Step() is called, the user can verify
the outputs of the chip using the function VerifySignalDatao.

For performing tests offline from the CPU, the following macros have been defined:

18

* BEGIN..0FFLINE

* END-OFFLINE()

These macros delimit an OFFLINE block. The commands in an offline block are executed
as a batch. However, the style of programming closely resembles the interactive (CPU-
driven) test. This allows the maximum portability of test programs between interactive and
offline code. In reality, the OFFLINE block code is executed twice. On the first iteration,
the local memory is set to the proper input vectors by executing SetSignalData() and
SetSignalDirection() commands. Then the batch of vectors is executed offline. The test
results are stored in local memory. Then the host code is executed in a second iteration,
to perform all the VerifySignalDatao) commands. The user must ensure that the code
block between the two macros is idempotent; all variables whose values change must be
initialized inside the block before use. Functions with side effects (e.g. scanrf 0) must not
execute during both passes of an OFFLINE block to ensure portability.

Further discussion of the test package is given in [4].

7 Future work

There is room for further experimentation with both the hardware and the software. One
idea that we wish to implement is the four-vector queue for performing true speed testing.
A preliminary study shows that this scheme would double the number of XC3020's required
over the current scheme. The cost of the entire tester system would increase by about 80
per cent over the current tester system without memory.

On the software side, there is further system integration to be done. Soon, the test en-
vironment will include the use of Kyoto Common Lisp and the RNL simulation package.
Since chip designers must use simulation to verify their designs prior to fabrication, it is
advantageous for them to reuse the simulation code to test the chips. The overall software
effort needed to perform chip testing is reduced.

8 Summary and conclusions

The UW Chip Tester achieves its design goals. Its design is a compromise between low cost
and functionality. The use of Xilinx Logic Cell Arrays helped reduce costs, add flexibility,
and reduce the physical dimensions of the tester. Its inexpensive, extensible design is useful
for testing both static and dynamic chips. Its software library simplifies the design of test
programs.

19

9 Acknowledgements

This project would not have come together without two key people: Carl Ebeling at UW
and Ian Jones of Apple Computer. Carl provided the wisdom and experience from his
involvement with the CMU Chip Tester, and proofread this paper. Ian shipped us the
MacIx development system from Apple, and provided software support. I thank Gaetano
Borriello, Bill Barnard, and all the other members of the Laboratory for Integrated Systems
at UW, for providing expert advice, tools, documentation, and participation in seminars
and demonstrations of the tester. I also thank John Torode and his colleagues at IC Designs
for providing chips to test.

References

[1] Alfke et al. The Programmable Gate Array Data Book. Copyright 1988 Xilinx, Inc.

[2] The TTL Data Book, Volume 2. Copyright 1985 Texas Instruments, Inc. ISBN 0-
89512-096-8

[3] Designing Cards and Drivers for Macintosh II and Macintosh SE. Addison-Wesley
Publishing Company, Inc. Copyright 1987 Apple Computer, Inc. ISBN 0-201-19256-8

[4] McKenzie, Neil. UW Chip Tester User Guide. University of Washington technical
report [to be announced], December 1989.

20

